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Abstract. In this paper, we describe PEGASUS, an open source Peta Graph Mining
library which performs typical graph mining tasks such as computing the diameter of
the graph, computing the radius of each node, finding the connected components, and
computing the importance score of nodes. As the size of graphs reaches several Giga-
, Tera- or Peta-bytes, the necessity for such a library grows too. To the best of our
knowledge, PEGASUS is the first such library, implemented on the top of the HADOOP
platform, the open source version of MAPREDUCE.

Many graph mining operations (PageRank, spectral clustering, diameter estimation,
connected components etc.) are essentially a repeated matrix-vector multiplication. In
this paper we describe a very important primitive for PEGASUS, called GIM-V (Gen-
eralized Iterated Matrix-Vector multiplication). GIM-V is highly optimized, achieving
(a) good scale-up on the number of available machines, (b) linear running time on the
number of edges, and (c) more than 5 times faster performance over the non-optimized
version of GIM-V.

Our experiments ran on M45, one of the top 50 supercomputers in the world. We
report our findings on several real graphs, including one of the largest publicly available
Web graphs, thanks to Yahoo!, with ~ 6,7 billion edges.

Keywords: PEGASUS; graph mining; GIM-V; Generalized Iterative Matrix-Vector
Multiplication; Hadoop

1. Introduction

Graphs are ubiquitous: computer networks, social networks, mobile call networks,
the World Wide Web (Broder et al, 2000), protein regulation networks to name
a few.

The large volume of available data, the low cost of storage and the stunning
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success of online social networks and web2.0 applications all lead to graphs of
unprecedented size. Typical graph mining algorithms silently assume that the
graph fits in the memory of a typical workstation, or at least on a single disk;
the above graphs violate these assumptions, spanning multiple Giga-bytes, and
heading to Tera- and Peta-bytes of data.

A promising tool is parallelism, and specifically MAPREDUCE (Dean et al,
2004) and its open source version, HADOOP. Based on HADOOP, here we describe
PEGASUS, a graph mining package for handling graphs with billions of nodes
and edges. The PEGASUS code and several dataset are at
http://www.cs.cmu.edu/~pegasus. The contributions are the following:

1. Unification of seemingly different graph mining tasks, via a generalization of
matrix-vector multiplication (GIM-V).

2. The careful implementation of GIM-V, with several optimizations, and sev-
eral graph mining operations (PageRank, Random Walk with Restart(RWR),
diameter estimation, and connected components). Moreover, the method is
linear on the number of edges, and scales up well with the number of available
machines.

3. Performance analysis, pinpointing the most successful combination of opti-
mizations, which lead to up to & times better speed than naive implementa-
tion.

4. Analysis of large, real graphs, including one of the largest publicly available
graph that was ever analyzed, Yahoo’s web graph.

The rest of the paper is organized as follows. Section 2 presents the related
work. Section 3 describes our framework and explains several graph mining al-
gorithms. Section 4 discusses optimizations that allow us to achieve significantly
faster performance in practice. In Section 5 we present timing results and Sec-
tion 6 our findings in real world, large scale graphs. We conclude in Section
7.

2. Background and Related Work
The related work forms two groups, graph mining, and HADOOP.

Large-Scale Graph Mining. There are a huge number of graph mining algo-
rithms, computing communities (eg., (Chen et al, 2009), DENGRAPH (Falkowski
et al, 2007), METIS (Karypis et al, 1999), (Narasimhamurthy et al, 2010)), sub-
graph discovery(e.g., GraphSig (Ranu et al, 2009), (Ke et al, 2009), (Hintsanen
et al, 2008), (Cheng et al, 2008), gPrune (Zhu et al, 2007), gApprox (Chen et
al, 2007), gSpan (Yan et al, 2002), Subdue (Ketkar et al, 2005), HSIGRAM /
VSIGRAM (Kuramochi et al, 2004), ADI (Wang et al, 2004), CSV (Wang et al,
2008), (Lahiri et al, 2010)), finding important nodes (e.g., PageRank (Brin et al,
1998) and HITS (Kleinberg, 1998)), computing the number of triangles (Tsourakakis
et al, KDD, 2009; Tsourakakis et al, Arxiv, 2009; Tsourakakis, 2010), computing
the diameter (Kang et al, 2010), topic detection (Qian et al, 2009), attack de-
tection (Shrivastava et al, 2008), clustering (Peng et al, 2010; Long et al, 2010),
with too-many-to-list alternatives for each of the above tasks. Most of the pre-
vious algorithms do not scale, at least directly, to several millions and billions of
nodes and edges.

For connected components, there are several algorithms, using Breadth-First
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Search, Depth-First-Search, “propagation” (Shiloach et al, 1982; Awerbuch et
al, 1983; Hirschberg et al, 1979), or “contraction” (Greiner, 1994) . These works
rely on a shared memory model which limits their ability to handle large, disk-
resident graphs.

MapReduce and Hadoop. MAPREDUCE is a programming framework (Dean
et al, 2004) (Aggarwal et al, 2004) for processing huge amounts of unstructured
data in a massively parallel way. MAPREDUCE has two major advantages: (a)
the programmer is oblivious of the details of the data distribution, replication,
load balancing etc. and furthermore (b) the programming concept is familiar,
i.e., the concept of functional programming. Briefly, the programmer needs to
provide only two functions, a map and a reduce. The typical framework is as
follows (Ralf, 2008): (a) the map stage sequentially passes over the input file and
outputs (key, value) pairs; (b) the shuffling stage groups of all values by key, (c)
the reduce stage processes the values with the same key and outputs the final
result.

HADOOP is the open source implementation of MAPREDUCE. HADOOP pro-
vides the Distributed File System (HDFS) and PIG, a high level language for
data analysis (Olston et al, 2008). Due to its power, simplicity and the fact that
building a small cluster is relatively cheap, HADOOP is a very promising tool for
large scale graph mining applications, something already reflected in academia,
see (Papadimitriou et al, 2008; Kang et al, 2009). In addition to PIG, there
are several high-level language and environments for advanced MAPREDUCE-
like systems, including SCOPE (Chaiken et al, 2008), Sawzall (Pike et al, 2005),
and Sphere (Grossman et al, 2008).

3. Proposed Method

How can we quickly find connected components, diameter, PageRank, node prox-
imities of very large graphs? We show that, even if they seem unrelated, even-
tually we can unify them using the GIM-V primitive, standing for Generalized
Iterative Matrix-Vector multiplication, which we describe in the next.

3.1. Main Idea

GIM-V, or ‘Generalized Iterative Matrix-Vector multiplication’ is a generalization
of normal matrix-vector multiplication. Suppose we have a n by n matrix M and
a vector v of size n. Let m; ; denote the (7, j)-th element of M. Then the usual
matrix-vector multiplication is

_ [ T
M x v =n" where v; =3 ._, m; jv;.

There are three operations in the previous formula, which, if customized
separately, will give a surprising number of useful graph mining algorithms:

1. combine2: multiply m; ; and v;.
2. combineAll: sum n multiplication results for node i.
3. assign: overwrite the previous value of v; with the new result to make v;.

In GIM-V, let’s define the operator X, where the three operations can be
defined arbitrarily. Formally, we have:
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SELECT E.sid, combineAllg ,;q(combine2(E.val,V.val))
FROM E, V
WHERE E.did=V.id
GROUP BY E.sid

Table 1. GIM-V in terms of SQL.

v =M xgv
where v; = assign(v;,combineAll;({z; | j = 1..n, and z; =combine2(m; j,v;)})).

The functions combine2(), combineAll(), and assign() have the following
signatures (generalizing the product, sum and assignment, respectively, that the
traditional matrix-vector multiplication requires):

1. combine2(m; j,v;) : combine m; ; and v;.
2. combineAll;(x1,...,2,) : combine all the results from combine2() for node i.
3. assign(v;, Unew) : decide how to update v; with vyep.

The ‘Iterative’ in the name of GIM-V denotes that we apply the X opera-
tion until an algorithm-specific convergence criterion is met. As we will see in a
moment, by customizing these operations, we can obtain different, useful algo-
rithms including PageRank, Random Walk with Restart, connected components,
and diameter estimation. But first we want to highlight the strong connection
of GIM-V with SQL: When combineAll;() and assign() can be implemented
by user defined functions, the operator X can be expressed concisely in terms
of SQL. This viewpoint is important when we implement GIM-V in large scale
parallel processing platforms, including HADOOP, if they can be customized to
support several SQL primitives including JOIN and GROUP BY. Suppose we
have an edge table E(sid, did, val) and a vector table V(id, val), corre-
sponding to a matrix and a vector, respectively. Then, X corresponds to the
SQL statement in Table 1. We assume that we have (built-in or user-defined)
functions, combineAll;() and combine2(), and we also assume that the resulting
table/vector will be fed into the assign() function (omitted, for clarity).

In the following sections we show how we can customize GIM-V, to handle
important graph mining operations including PageRank, Random Walk with
Restart, diameter estimation, and connected components.

3.2. GIM-V and PageRank

Our first application of GIM-V is PageRank, a famous algorithm that was used
by Google to calculate relative importance of web pages (Brin et al, 1998). The
PageRank vector p of n web pages satisfies the following eigenvector equation:

p=(cE" +(1-)U)p

where ¢ is a damping factor (usually set to 0.85), E is the row-normalized
adjacency matrix (source, destination), and U is a matrix with all elements set
to 1/n.

To calculate the eigenvector p we can use the power method, which multiplies
an initial vector with the matrix, several times. We initialize the current PageR-
ank vector p“" and set all its elements to 1/n. Then the next PageRank p™¢® is
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calculated by p™¢** = (cET 4 (1 —¢)U)p*". We continue to do the multiplication
until p converges.

PageRank is a direct application of GIM-V. In this view, we first construct
a matrix M by column-normalize ET such that every column of M sum to 1.
Then the next PageRank is calculated by p™¢®* = M x g p°“" where the three
operations are defined as follows:

1. combine2(m; j,vj) = ¢ X m; j X v;
. 1—
2. combineAll;(zy, ..., z,) = ( nc) +5 ;-l:l z;

3. assign(vi, Vnew) = Unew

3.3. GIM-V and Random Walk with Restart

Random Walk with Restart(RWR) is an algorithm to measure the proximity of
nodes in graph (Pan et al, 2004). In RWR, the proximity vector r from node k
satisfies the equation:

e = cMri + (1 — ¢)eg

where ey, is a n-vector whose k" element is 1, and every other elements are 0.
¢ is arestart probability parameter which is typically set to 0.85 (Pan et al, 2004).
M is a column-normalized and transposed adjacency matrix, as in Section 3.2.
In GIM-V, RWR is formulated by 72" = M x ¢ r{*" where the three operations
are defined as follows ( d;; is the Kronecker delta, equal to 1 if i = k and 0
otherwise):

1. combine2(m; j,vj) = ¢ X m; j X v;
2. combineAll;(1,...,xpn) = (1 —c)ou + 37, x;
3. assign(vi, Vnew) = Unew

3.4. GIM-V and Diameter Estimation

HapI (Kang et al, 2010) is an algorithm to estimate the diameter and radius
of large graphs. The diameter of a graph is the maximum of the length of the
shortest path between every pair of nodes. The radius of a node v; is the number
of hops that we need to reach the farthest-away node from v;. The main idea
of HADI is as follows. For each node v; in the graph, we maintain the number
of neighbors reachable from v; within h hops. As h increases, the number of
neighbors increases until h reaches it maximum value. The diameter is h where
the number of neighbors within h41 does not increase for every node. For further
details and optimizations, see (Kang et al, 2010).

The main operation of HADI is updating the number of neighbors as h in-
creases. Specifically, the number of neighbors within hop h reachable from node
v; is encoded in a probabilistic bitstring bzh which is updated as follows:

bi ! = b BITWISE-OR {b} | (i, k) € E}
In GIM-V, the bitstring update of HADI is represented by

bh+1 =M xth
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where M is an adjacency matrix, b"*! is a vector of length n which is updated
by
ph+1 :assign(b?,con}bineAlli({xj | j=1.n, and z; :combineQ(mi,j,b?)})),
and the three operations are defined as follows:

1. combine2(m; j,vj) = m; ; X v;
2. combineAll;(z1, ., zn) — BITWISE-OR{z, | j = L..n}
3. assign(vi, Vnew) = BITWISE OR(v;, Unew)-

The X operation is run iteratively until the bitstring for all the nodes do
not change.

3.5. GIM-V and Connected Components

We propose HCC, a new algorithm for finding connected components in large
graphs. Like HADI, HccC is an application of GIM-V with custom functions. The
n1a1n idea is as follows. For every node v; in the graph, we maintain a component
id ¢! which is the minimum node id within 4 hops from v;. Initially, ¢! of v; is set
to 1ts own node id: that is, ¢? = i. For each iteration, each node sends its current
clh to its neighbors. Then C;hLl, component id of v; at the next step, is set to the
minimum value among its current component id and the received component ids
from its neighbors. The crucial observation is that this communication between
neighbors can be formulated in GIM-V as follows:

=M xgch

where M is an adjacency matrix, ¢"*1 is a vector of length n which is updated
by
! —assign(cl,combineAll;({z; | j = l..n, and z; fcomblne2(m”,c§‘)}))
and the three operations are defined as follows

1. combine2(m; j,vj) = m; ; X v;
2. combineAll;(xy,...,Tn) = MIN{xJ | i =1.n}.
3. assign(vi, Vnew) = MIN(vl,vnew)

By repeating this process, component ids of nodes in a component are set
to the minimum node id of the component. We iteratively do the multiplication
until component ids converge. The upper bound of the number of iterations in
Hcc are determined by the following theorem.

Theorem 1 (Upper bound of iterations in Hcc). HCC requires maximum
d iterations where d is the diameter of the graph.

Proof. The minimum node id is propagated to its neighbors at most d times. [

Since the diameter of real graphs are relatively small, HcC completes after
small number of iterations.

4. Fast Algorithms for GIM-V

How can we parallelize the algorithm presented in the previous section? In this
section, we first describe naive HADOOP algorithms for GIM-V. After that we
propose several faster methods for GIM-V.
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Algorithm 1 GIM-V BASE Stage 1.

Input: Matrix M = {(idsyc, (idgst, mval))}, Vector V = {(id,vval)}
Output: Partial vector V' = {(id., combine2(muwal, vval)}
. Stagel-Map(Key k, Value v):
if (k,v) is of type V then

Output(k, v); // (k: id, v: vval)
else if (k,v) is of type M then

(idgst, mval) — v;

Output(idgst, (k, mval)); // (ki idgc)
end if

Stagel-Reduce(Key k, Value v[1..m]):
saved kv | |;
saved_v [ [;
for v € v[1..m] do
if (k,v) is of type V then
saved_v «— v;
Output(k, (“sel 7, saved_v));
else if (k,v) is of type M then
Add v to saved_kv; /] (v: (idgpe, mual))
end if
end for
for (id.,.,mval’) € saved_kv do
Output(idy,., (“others” ,combine2(mual’, saved_v)));
: end for

==

N NN = = = = e e e e

4.1. GIM-V BASE: Naive Multiplication

GIM-V BASE is a two-stage algorithm whose pseudo code is in Algorithm 1
and 2. The inputs are an edge file and a vector file. Each line of the edge file
contains one (idgpc, idgst, mval) which corresponds to a non-zero cell in the ad-
jacency matrix M. Similarly, each line of the vector file contains one (id, vval)
which corresponds to an element in the vector V. Stagel performs combine?2
operation by combining columns of matrix(id4s; of M) with rows of vector(id
of V). The output of Stagel are (key, value) pairs where key is the source
node id of the matrix(ids.. of M) and the value is the partially combined re-
sult(combine2(mwval, vval)). This output of Stagel becomes the input of Stage?2.
Stage2 combines all partial results from Stagel and assigns the new vector to
the old vector. The combineAll;() and assign() operations are done in line 15
of Stage2, where the “self” and “others” tags in line 15 and line 21 of Stagel
are used to make v; and vy, Of GIM-V, respectively.

This two-stage algorithm is run iteratively until application-specific conver-
gence criterion is met. In Algorithm 1 and 2, Output(k, v) means to output data
with the key k and the value v.

4.2. GIM-V BL: Block Multiplication

GIM-V BL is a fast algorithm for GIM-V which is based on block multiplication.
The main idea is to group elements of the input matrix into blocks or submatrices
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Algorithm 2 GIM-V BASE Stage 2.

Input: Partial vector V' = {(idgy¢, vval’)}
Output Result Vector V' = {(idsyc, vval)}
. Stage2-Map(Key k, Value v):

Output(k, v);

Stage2-Reduce(Key k, Value v[1..m]):
othersv [ ];
self v | J
for v € v[1..m] do
(tag, ") — v;
if tag = ame” then
self v+ v';
else if tag = “others” then
Add v’ to others_v;
end if
end for
Output(k,assign(sel f_v,combineAlly (others_v)));

= = e e
AN AR S

Vo V1 V2

Bos Boz CIJ G [

Bt bl Ll [o] B G0
B tt el ol * [efve L] fola]
Baotr i fols e "2?::; o

Fig. 1. GIM-V BL using 2 x 2 blocks. B; ; represents a matrix block, and v; rep-
resents a vector block. The matrix and vector are joined block-wise, not element-
wise.

of size b by b. Also we group elements of input vectors into blocks of length b.
Here the grouping means we put all the elements in a group into one line of input
file. Each block contains only non-zero elements of the matrix or vector. The
format of a matrix block with k nonzero elements is (rowpiock, COlbiocks TOWeiem, s
COlelemy , MUGlelemy s -y TOWelemy, s COlelemy s MUGLelem, ). Similarly, the format of a
vector block with & nonzero elements is (idpiock, ideiemy s VU eiemy s -+ idelemy s
vValeiem, ). Only blocks with at least one nonzero elements are saved to disk.
This block encoding forces nearby edges in the adjacency matrix to be closely
located; it is different from HADOOP’s default behavior which do not guarantee
co-locating them. After grouping, GIM-V is performed on blocks, not on individual
elements. GIM-V BL is illustrated in Figure 1.

In our experiment at Section 5, GIM-V BL is more than 5 times faster than
GIM-V BASE. There are two main reasons for this speed-up.

— Sorting Time Block encoding decreases the number of items to sort in the
shuffling stage of HADOOP. We observed that one of the main bottleneck of
programs in HADOOP is its shuffling stage where network transfer, sorting, and
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Fig. 2. Clustered vs. non-clustered adjacency matrices for two isomorphic graphs.
The edges are grouped into 2 by 2 blocks. The left graph uses only 3 blocks while
the right graph uses 9 blocks.

disk I/O happens. By encoding to blocks of width b, the number of lines in
the matrix and the vector file decreases to 1/b* and 1/b times of their original
size, respectively for full matrices and vectors.

— Compression The size of the data decreases significantly by converting edges
and vectors to block format. The reason is that in GIM-V BASE we need 4 x 2
bytes to save each (srcid, dstid) pair since we need 4 bytes to save a node id
using Integer. However in GIM-V BL we can specify each block using a block
row id and a block column id with two 4-byte Integers, and refer to elements
inside the block using 2 x logb bits. This is possible because we can use logb bits
to refer to a row or column inside a block. By this block method we decreased
the edge file size(e.g., more than 50% for YahooWeb graph in Section 5).

4.3. GIM-V CL: Clustered Edges

When we use block multiplication, another advantage is that we can benefit
from clustered edges. As can be seen from Figure 2, we can use smaller number
of blocks if input edge files are clustered. Clustered edges can be built if we
can use heuristics in data preprocessing stage so that edges are clustered, or
by co-clustering (e.g., see (Papadimitriou et al, 2008)). The preprocessing for
edge clustering need to be done only once; however, they can be used by every
iteration of various application of GIM-V. So we have two variants of GIM-V:
GIM-V CL, which is GIM-V BASE with clustered edges, and GIM-V BL-CL, which
is GIM-V BL with clustered edges. Be aware that clustered edges is only useful
when combined with block encoding. If every element is treated separately, then
clustered edges don’t help anything for the performance of GIM-V.

4.4. GIM-V DI: Diagonal Block Iteration

As mentioned in Section 4.2, the main bottleneck of GIM-V is its shuffling and
disk I/O steps. Since GIM-V iteratively runs Algorithm 1 and 2, and each Stage
requires disk IO and shuffling, we could decrease running time if we decrease the
number of iterations.

In Hce, it is possible to decrease the number of iterations. The main idea
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Fig. 3. Propagation of component id(=1) when block width is 4. Each element
in the adjacency matrix of (a) represents a 4 by 4 block; each column in (b) and
(c) represents the vector after each iteration. GIM-V DL finishes in 4 iterations
while GIM-V BL requires 8 iterations.

is to multiply diagonal matrix blocks and corresponding vector blocks as much
as possible in one iteration. Remember that multiplying a matrix and a vector
corresponds to passing node ids to one step neighbors in Hcc. By multiplying
diagonal blocks and vectors until the contents of the vectors do not change in one
iteration, we can pass node ids to neighbors located more than one step away.
This is illustrated in Figure 3.

We see that in Figure 3 (c¢) we multiply B;; with v; several times until v;
do not change in one iteration. For example in the first iteration vy changed
from {1,2,3,4} to {1,1,1,1} since it is multiplied to By four times. GIM-V DI is
especially useful in graphs with long chains.

The upper bound of the number of iterations in Hcc DI with chain graphs
are determined by the following theorem.

Theorem 2 (Upper bound of iterations in Hcc DI). In a chain graph with
length m, it takes maximum 2 * [m/b] — 1 iterations in Hcc DI with block size
b.

Proof. The worst case happens when the minimum node id is in the beginning of
the chain. It requires 2 iterations(one for propagating the minimum node id inside
the block, another for passing it to the next block) for the minimum node id to
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Algorithm 3 Renumbering the minimum node
Input: Edge F = {(idsc, idast) },
current minimum node id minid,,,,
new minimum node id minid, e,
Output: Renumbered Edge V' = {(id.,.,id},,)}
: Renumber-Map(key k, value v):
src «— k;
dst — v;
if src = minid,,, then
ST — Mintdpew;
else if src = minid,, ., then
Src «— minidey,;
end if
if dst = minid.,, then
dst «— minid,eqy;
else if dst = minid,, then
dst «— minidey,;
end if
Output(sre, dst);

==

— =

move to an adjacent block. Since the farthest block is [m/b] — 1 steps away, we
need 2 ([m/b] — 1) iterations. When the minimum node id reached the farthest
away block, GIM-V DI requires one more iteration to propagate the minimum
node id inside the last block. Therefore, we need 2 ([m/b] —1)+1 = 2x[m/b] —
iterations. [

4.5. GIM-V NR: Node Renumbering

In HCC, the minimum node id is propagated to the other parts of the graph
within at most d steps, where d is the diameter of the graph. If the node with
the minimum id(which we call ‘minimum node’) is located at the center of the
graph, then the number of iterations is small, close to d/2. However, if it is
located at the boundary of the network, then the number of iteration can be
close to d. Therefore, if we preprocess the edges so that the minimum node id is
swapped to the center node id, the number of iterations and the total running
time of HCC would decrease.

Finding the center node with the minimum radius could be done with the
HADI (Kang et al, 2010) algorithm. However, the algorithm is expensive for
the pre-processing step of HCC. Therefore, we instead propose the following
heuristic for finding the center node: we choose the center node by sampling
from the highest-degree nodes. This heuristic is based on the fact that nodes
with large degree have small radii (Kang et al, 2010). Moreover, computing the
degree of very large graphs is trivial in MAPREDUCE and could be performed
quickly with one job.

After finding a center node, we need to renumber the edge file to swap the
current minimum node id with the center node id. The MAPREDUCE algorithm
for this renumbering is shown in Algorithm 3. Since the renumbering requires
only filtering, it can be done with a Map-only job.
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4.6. Analysis

We analyze the time and space complexity of GIM-V. In the theorems below, M
is the number of machines.

Theorem 3 (Time Complexity of GIM-V). One iteration of GIM-V takes
O(YE10gV=E ) time.

Proof. Assuming uniformity, mappers and reducers of Stagel and Stage2 re-
ceives O(V—]T/[E) records per machine. The running time is dominated by the

sorting time for Y5EE records, which is O(YElogSEE). O

Theorem 4 (Space Complexity of GIM-V). GIM-V requires O(V + E) space.

Proof. We assume the value of the elements of the input vector v is constant.

Then the theorem is proved by noticing that the maximum storage is required at

the output of Stagel mappers which requires O(V 4 E) space up to a constant.
O

5. Performance and Scalability

We do experiments to answer the following questions:

Q1 How does GIM-V scale up?

Q2 Which of the proposed optimizations(block multiplication, clustered edges,
and diagonal block iteration, node renumbering) gives the highest performance
gains?

The graphs we used in our experiments at Section 5 and 6 are described in
Table 2 ! .

We run PEGASUS in M45 HADOOP cluster by Yahoo! and our own cluster
composed of 9 machines. M45 is one of the top 50 supercomputers in the world
with the total 1.5 Pb storage and 3.5 Tb memory. For the performance and
scalability experiments, we used synthetic Kronecker graphs (Leskovec et al,
2005) since we can generate them with any size, and they are one of the most
realistic graphs among synthetic graphs.

5.1. Results

We first show how the performance of our method changes as we add more ma-
chines. Figure 4 shows the running time and performance of GIM-V for PageRank
with Kronecker graph of 282 million edges, and size 32 blocks if necessary.

In Figure 4 (a), for all of the methods the running time decreases as we add
more machines. Note that clustered edges(GIM-V CL) didn’t help performance
unless it is combined with block encoding. When it is combined, however, it
showed the best performance (GIM-V BL-CL).

1 Wikipedia: http://www.cise.ufl.edu/research/sparse/matrices,/

Kronecker, DBLP: http://www.cs.cmu.edu/~pegasus
YahooWeb, LinkedIn: released under NDA.
flickr, Epinions, patent: not public data.
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Name Nodes Edges Description
YahooWeb 1,413 M 6,636 M WWW pages in 2002
LinkedIn 7.5 M 58 M person-person in 2006
4.4 M 27 M person-person in 2005
1.6 M 6.8 M person-person in 2004
85 K 230 K person-person in 2003
Wikipedia 3.5 M 42 M doc-doc in 2007/02
3M 35 M doc-doc in 2006/09
1.6 M 185 M  doc-doc in 2005/11
Kronecker 177 K 1,977 M synthetic
120 K 1,145 M synthetic
59 K 282 M  synthetic
19 K 40 M synthetic
WWW-Barabasi 325 K 1,497 K WWW pages in nd.edu
DBLP 471 K 112 K document-document
flickr 404 K 2.1 M  person-person
Epinions 75 K 508 K who trusts whom

Table 2. Order and size of networks.
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Fig. 4. Scalability and Performance of GIM-V. (a) Running time decreases
quickly as more machines are added. (b) The performance(=1/running time)
of 'BL-CL’ wins more than 5x (for n=3 machines) over the 'BASE’. (¢) Every

version of GIM-V shows linear scalability.
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Fig. 5. Comparison of GIM-V DI and GIM-V BL-CL for Hcc. GIM-V DI finishes
in 6 iterations while GIM-V BL-CL finishes in 18 iterations due to long chains.

In Figure 4 (b), we see that the relative performance of each method com-
pared to GIM-V BASE method decreases as number of machines increases. With
3 machines (minimum number of machines which HADOOP ‘distributed mode’
supports), the fastest method(GIM-V BL-CL) ran 5.27 times faster than GIM-V
BASE. With 90 machines, GIM-V BL-CL ran 2.93 times faster than GIM-V BASE.
This is expected since there are fixed component(JVM load time, disk I/O, net-
work communication) which can not be optimized even if we add more machines.

Next we show how the performance of our methods changes as the input size
grows. Figure 4 (c) shows the running time of GIM-V with different number of
edges under 10 machines. As we can see, all of the methods scales linearly with
the number of edges.

Next, we compare the performance of GIM-V DI and GIM-V BL-CL for Hcc
in graphs with long chains. For this experiment we made a new graph whose
diameter is 17, by adding a length 15 chain to the 282 million Kronecker graph
which has diameter 2. As we see in Figure 5, GIM-V DI finished in 6 iteration
while GIM-V BL-CL finished in 18 iteration. The running time of both methods
for the first 6 iterations are nearly same. Therefore, the diagonal block iteration
method decreases the number of iterations while not affecting the running time
of each iteration much.

Finally, we compare the number of iterations with/without renumbering. Fig-
ure 6 shows the degree distribution of LinkedIn. Without renumbering, the min-
imum node has degree 1, which is not surprising since about 46 % of the nodes
have degree 1 due to the power-law behavior of the degree distribution. We show
the number of iterations after changing the minimum node to each of the top
5 highest-degree nodes in Figure 7. We see that the renumbering decreased the
number of iterations to 81 % of the original. Similar results are observed for the
Wikipedia graph in Figure 8 and 9. The original minimum node has degree 1,
and the number of iterations decreased to 83 % of the original after renumbering.
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Fig. 6. Degree distribution of LinkedIn. Notice that the original minimum node
has degree 1, which is highly probable given the power-law behavior of the de-
gree distribution. After the renumbering, the minimum node is replaced with a
highest-degree node.
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Fig. 7. Number of iterations vs. the minimum node of LinkedIn, for connected
components. Di represents the node with i-th largest degree. Notice that the
number of iterations decreased by 19 % after renumbering.

6. GIM-V At Work

In this section we use PEGASUS for mining very large graphs. We analyze con-
nected components, diameter, and PageRank of large real world graphs. We
show that PEGASUS can be useful for finding patterns, outliers, and interesting
observations.
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Fig. 8. Degree distribution of Wikipedia. Notice that the original minimum
node has degree 1, as in LinkedIn. After the renumbering, the minimum node is
replaced with a highest-degree node.
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Fig. 9. Number of iterations vs. the minimum node of Wikipedia, for connected
components. Di represents the node with i-th largest degree. Notice that the
number of iterations decreased by 17 % after renumbering.

6.1. Connected Components of Real Networks

We used the LinkedIn social network and Wikipedia page-linking-to-page net-
work, along with the YahooWeb graph for connected component analysis. Fig-
ure 10 shows the evolution of connected components of LinkedIn and Wikipedia
data. Figure 11 show the distribution of connected components in the YahooWeb
graph. We have the following observations.

Power Laws in Connected Components Distributions We observed
power law relation of count and size of small connected components in Fig-
ure 10(a),(b) and Figure 11. This reflects that the connected components in real
networks are formed by processes similar to Chinese Restaurant Process and
Yule distribution (Newman, 2005).

Stable Connected Components After Gelling Point In Figure 10(a),
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Fig. 10. The evolution of connected components. (a) The giant connected com-
ponent grows for each year. However, the second largest connected component
do not grow above Dunbar’s number(a 150) and the slope of the size distribu-
tion remains constant after the gelling point at year 2003. (b) As in LinkedIn,
notice the growth of giant connected component and the constant slope of the
size distribution.

the distribution of connected components remain stable after a ‘gelling’ point(McGlohon
et al, 2008) at year 2003. We see that the slope of the size distribution do not
change after year 2003. We observed the same phenomenon in Wikipedia graph
in Figure 10 (b). The graph show stable slopes from the beginning, since the
network were already mature in year 2005.

Absorbed Connected Components and Dunbar’s number In Fig-
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Fig. 11. Connected Components of YahooWeb. Notice the two anomalous spikes
which are far from the constant-slope line. Most of them are domain selling or
porn sites which are replicated from templates.

ure 10(a), we find two large connected components in year 2003. However it
became merged in year 2004. The giant connected component keeps growing,
while the second and the third largest connected components do not grow beyond
size 100 until they are absorbed to the giant connected component in Figure 10
(a) and (b). This agrees with the observation(McGlohon et al, 2008) that the size
of the second/third connected components remains constant or oscillates. Lastly,
the maximum connected component size except the giant connected component
in the LinkedIn graph agrees well with Dunbar’s number(Dunbar, 1998), which
says that the maximum community size in social networks is roughly 150.

Anomalous Connected Components In Figure 11, we found two out-
standing spikes. In the first spike at size 300, more than half of the components
have exactly the same structure and they were made from a domain selling com-
pany where each component represents a domain to be sold. The spike happened
because the company replicated sites using the same template, and injected the
disconnected components into WWW network. In the second spike at size 1101,
more than 80 % of the components are porn sites disconnected from the giant
connected component. By looking at the distribution plot of connected compo-
nents, we could find interesting communities with special purposes which are
disconnected from the rest of the Internet.

6.2. PageRank scores of Real Networks

We analyzed the PageRank scores of the nodes of real graphs, using PEGASUS.
Figure 12 and 13 show the distribution of the PageRank scores for the Web
graphs, and Figure 14 shows the evolution of PageRank scores of the LinkedIn
and Wikipedia graphs. We have the following observations.

Power Laws in PageRank Distributions In Figure 12, 13, and 14, we ob-
serve power-law relations between the PageRank score and the number of nodes
with such PageRank. Pandurangan et. al.(Pandurangan et al, 2002) observed
such a power-law relationship for a 1.69 million network. Our result is that the



PEGASUS: Mining Peta-Scale Graphs 19

ot s YahooWeb
3 X,
- 107 | * Slope =
5 %, -2.30
810%} M ¥

10!} %%

P *

100 107 10 103
PageRank

Fig. 12. PageRank distribution of YahooWeb. The distribution follows a power
law with an exponent 2.30.

same observation holds true for about 1,000 times larger network with 1.4 billion
pages snapshot of the Internet. The top 3 highest PageRank sites for the year
2002 are www.careerbank.com, access.adobe.com, and topl100.rambler.ru.
As expected, they have huge in-degrees (from ~70K to ~70M).

PageRank and the Gelling Point In the LinkedIn network (see Figure 14
(a)), we see a discontinuity for the power-law exponent of the PageRank distri-
bution, before and after the gelling point at year 2003. For the year 2003 (up to
the gelling point), the exponent is 2.15; from 2004 (after the gelling point), the
exponent stabilizes around 2.59. Also, the maximum PageRank value at 2003 is
around 1079, which is 11—0 of the maximum PageRank from 2004. This behavior
is explained by the emergence of the giant connected component at the gelling
point: Before the gelling point, there are many small connected components
where no outstanding node with large PageRank exists. After the gelling point,
several nodes with high PageRank appear within the giant connected compo-
nent. In the Wikipedia network (see Figure 14 (b)), we see the same behavior of
the network after the gelling point. Since the gelling point is before year 2005, we
see that the maximum PageRank-score and the slopes are similar for the three
graphs from 2005.

6.3. Diameter of Real Network

We analyzed the diameter and radius of real networks with PEGASUS. Figure 15
shows the radius plot of real networks. We have following observations:

Small Diameter For all the graphs in Figure 15, the average diameter was
less than 6.09. This means that the real world graphs are well connected.

Constant Diameter over Time For LinkedIn graph, the average diameter
was in the range of 5.28 and 6.09. For Wikipedia graph, the average diameter
was in the range of 4.76 and 4.99. Note that the diameter do not monotonically
increase as network grows: they remain constant or shrinks over time.

Bimodal Structure of Radius Plot For every plot, we observe a bimodal
shape which reflects the structure of these real graphs. The graphs have one
giant connected component where majority of nodes belong to, and many smaller
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Fig. 13. PageRank distribution of WWW-Barabasi. The distribution follows a
power law with an exponent 2.25.

connected components whose size follows a power law. Therefore, the first mode
is at radius zero which comes from one-node components; second mode(e.g., at
radius 6 in Epinion) comes from the giant connected component.

7. Conclusions

In this paper we proposed PEGASUS, a graph mining package for very large
graphs using the HADOOP architecture. The main contributions are followings:

— We identified the common, underlying primitive of several graph mining op-
erations, and we showed that it is a generalized form of a matrix-vector mul-
tiplication. We call this operation Generalized Iterative Matrix-Vector multi-
plication and showed that it includes the diameter estimation, the PageRank
estimation, RWR calculation, and finding connected-components, as special
cases.

— Given its importance, we proposed several optimizations (block-multiplication,
diagonal block iteration, node renumbering etc) and reported the winning
combination, which achieves more than 5 times faster performance to the
naive implementation.

— We implemented PEGASUS and ran it on M45, one of the 50 largest super-
computers in the world (3.5 Tb memory, 1.5Pb disk storage). Using PEGASUS
and our optimized Generalized Iterative Matrix-Vector multiplication variants,
we analyzed real world graphs to reveal important patterns including power
law tails, stability of connected components, and anomalous components. Our
largest graph, “YahooWeb” | spanned 120Gb, and is one of the largest publicly
available graph that was ever studied.

Other open source libraries such as HAMA (Hadoop Matrix Algebra) can
benefit significantly from PEGASUS. One major research direction is to add to
PEGASUS an eigensolver, which will compute the top k eigenvectors and eigenval-
ues of a matrix. Another directions includes tensor analysis on HADOOP (Kolda
et al, 2008), and inferences of graphical models in large scale.
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Fig. 14. The evolution of PageRanks.(a) The distributions of PageRanks follows
a power-law. However, the exponent at year 2003, which is around the gelling
point, is much different from year 2004, which are after the gelling point. The
exponent increases after the gelling point and becomes stable. Also notice the
maximum PageRank after the gelling point is about 10 times larger than that
before the gelling point due to the emergence of the giant connected compo-
nent. (b) Again, the distributions of PageRanks follows a power-law. Since the
gelling point is before year 2005, the three plots show similar characteristics: the
maximum PageRanks and the slopes are similar.
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